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It is suggested that certain transition density matrices, N-representable in a limit, be used in a 
variational calculation. It is noted that such trial matrices should yield reasonable values for the 
ground state energies of small atoms or molecules provided a set of overlap integrals is maximised. 

Es wird vorgeschlagen, bestimmte Ubergangsdichtematrizen, die im Limit N-darstellbar sind, 
in einer Variationsrechnung zu benutzen. Es wird festgestellt, dab solche N~iherungsmatrizen gute 
Werte ftir die Energie des Grundzustandes kleiner Atome oder Molektile geben sollten, falls im Satz 
yon Uberlappungsintegralen maximiert wird. 

On propose d'utiliser dans un calcul variationnel certaines matrices densit6 de transition, N 
repr6sentables /t la limite. Ces matrices d'essai devraient fournir des valeurs raissonnables pour 
l'6nergie de l'6tat fondamental dans les petits atomes et les petites molecules 5 condition de maximiser 
un ensemble d'int6grales de recouvrement. 

Introduction 

Q u a n t u m  chemistry has met with considerable success in calculating the 
g round  state energies of a toms and a tomic  ions and more  recently in comput ing  
molecular  binding energies. 

These calculations are normal ly  performed on a computer  by varying the 
different parameters  which define a trial wave function, according to a mini- 
misation procedure.  Such minimisat ion procedures rely upon  the Variat ion 
Theorem and hence upon  totally ant isymmetric  trial functions. 

Since full N-representabil i ty condit ions have not  been found for density 
matrices, any numerical  work  has been done in trivial cases or using density 
matrices formed by integrat ion of an antisymm~tric function. This compromise  
is mot ivated  from fear of  violating the Variat ion Pr inc ipa l  during a minimisat ion 
procedure and may  account  for the lack of  success of the density matrix in the 
field of quan tum chemistry. For  example a l though the density matrix was intro- 
duced seventeen years ago [1], no  theory of  valency has been advanced which 
has a basis in density matrix theory or  uses the nota t ion of  geminals. 

A resolution of the di lemma would be to adopt  a per turbat ion approach  to add 
corrections to the density matrix. The question of per turbat ion corrections and 
their relation to N-representabil i ty has never been properly discussed and there 
is no  reason why a systematic approach  along these lines should not  be adopted.  

It has also been suggested [ 2 L 4 ]  that  density matrices which are 
"approximately  N-representable"  may be used to obtain bounds  upon  the 
energy. It would  not  seem unreasonable  therefore to relate such bounds  to the 
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particular order of the perturbation corrections. In this paper a scheme is out- 
lined which uses transition density matrices which do not fulfill all the 
N-representability conditions. 

The Transition Matrix 

The discussion below is restricted to a system containing four electrons but 
may be extended to more general cases. 

A totally antisymmetric wave function 7J(1234) may be expanded in terms 
of the eigenfunctions {~b,(12)} to the reduced two electron Hamiltonian h(12); 
that is 

7/(1234) = ~ ~,(12)f,(34), (1) 
n 

where 
f~(34) = ~ ~b*(12)7~(1234). (2) 

34- 

The reduced Hamiltonian is related to the N-particle Hamiltonian H(1234) by [5] 

1 
H(1234) = ~- NQ h(12), (3) 

where Q is a projection operator formed from all even permutations P of the 
N-particles, that is 

2 
Q =  N! ~ P" (4) 

e v e n  

In the {~,} representation the second order reduced density matrix is written 

O(2)(12 : 1'2') = ~ B,m~b,(12 ) ~b*(l'2'), (5) 
n m  

where 
B,,, = ~ f,(34)f*(34).  (6) 

1 2  

The advantage of the density matrix formalism lies in the possibility of working 
with this function directly rather than with the wave function which becomes 
more difficult to define numerically with an increasing member of electrons. The 
drawback to this approach is that one does know how to choose the {f,} or 
{B,,,} in order that the density matrix be N-representable [6]. (An N-represen- 
table density matrix is one derivable from an N-particle antisymmetric function 
or an ensemble of such functions.) 

Grimley and Peat [5] suggested that as a first approximation to (5) the {fn} 
be projected from a zero order determinantal wave function 7J~ by zero 
order geminals {4~(, ~ expanded in the same basis set. These zero order functions 
are Slater Determinants or linear combinations of such determinants with 
simple coefficients. That is 

f,~~ = ~ ~*~~176 (7) 
3 4  
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The approximate {B(~ )} 

B(~ = ~ f,(~176 (8) 
34 

are inserted into (5), the correlated basis {4,) being retained, and therefore 
define a trial density matrix D(~)(12 : 1'2'), 

D~)(12 �9 1'2') = Z B(.~ 4"(1'2'). (9) 
n m  

The energy computed using this trial density matrix generally falls below the true 
energy since the wave function 

~gr(1234) = ~ 4,(12)f,(~ (10) 
?l 

is not antisymmetric under the permutation (2, 3). (It can not, however, be proved 
that the calculated energies form a lower bound.) Since the {4,} are orthonormal 
the energy calculated using D~2)(34 : 3'4'), where 

D~2)(34: 3'4') = ~ ~r(1234) 7J~.(123'4'), (11) 
1 2  

lies above the true energy. If 7Jr~ is chosen to be the Hartree-Fock wave 
function then the energy calculated using (11) is the Hartree-Fock energy. 

The preceding discussion suggests that one may be able to improve upon the 
Grimley-Peat result employing the transition matrix defined by using the non 
antisymmetric wave functions; 

/~ ) (34 :  12) = ~ ~P*(1'2'34) ~r(121'2') (12) 
1 ' 2 '  

= 22 B,m/*(~ 4m(12), (13) 
where 

B,,,,,= )" 4"(1'2')/~~ (14) 
1 ' 2 '  

The energy calculated using this matrix is 

= N Trace h(l'2') D(~)(12 �9 1'2')+ Trace/5(~ ) (15) 
2 

N 
_ - - 2  2 B,,,e,. + ~ B.~, (16t 

n 

where the e,, are eigenvalues to h(12) associated with the eigenfunctions 4,.  
The lower bound to F occurs if the overlaps {B,m} are maximized with respect 
to the {f~0)}, in such a limit E approaches the Grimley-Peat result. This limit is 
unobtainable of course since the zero order {f~0)} can never overlap completely 
with correlated {4,}. The expression (16) will therefore give an improvement 
over the Grimley-Peat result. Conversely the meaning of maximizing the {B,m} 
with respect to the {4,} may be investigated. Such a maximization could only 
be achieved if the {4,} were limited to determinantal wave functions, with a 
corresponding increase in the energy; for example in the case of Hartree-Fock 
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geminals, an upper bound F would be given by the Hartree-Fock energy. 
Therefore this transition matrix gives a calculated energy bracketed between the 
Grimley-Peat and Hartree-Fock results. 

The example of anzats (12) suggests therefore that a more general transition 
matrix 

D(21(12 1'2')= S ~(1234)~B(1'2'34) (17) 
A B , ,  : 

34 

could be used in calculations. ~a is a Hartree-Fock or configurational inter- 
action wave function while ~B is a trial function built up from correlated 
geminals, possibly the eigenfunctions to h(12), and may not be totally anti- 
symmetric. Given the form ,-,(2) L, AB one would work directly with this density matrix 
rather than with the wave functions. An attempt would be made to maximize 
the overlap by varying ~a and by selecting the geminals from the set {~,} which 
are to be inserted in ~ .  For example in the case of the ground state to a four 
electron ion the dominant configuration in ~A will be (1 S 2 2S 2) indicating that the 
overlap may be maximised if the ~(2S 2) geminal is included in ~B. Since the 
energy corresponding to this geminal is quite large it would not have been included 
in ~B on the grounds of energy minimisation alone. 

No calculations have been performed using this program, however a simple 
argument gives an order of magnitude estimate of the success of the method. 
Consider ~A to be the Hartree-Fock solution and ~B to be composed of six 
eigenfunctions ~(ls2:1S); ~(ls2s: lS);  ~(ls2s:  3S); ~(2s2;1S) to h(12). The 

�9 ~ ( 2  2 energy calculated using ~a~ with these functions is 

E A  B = 2~ R(0)A 2 ,o. + Z R(0)A 2 (18) 
- - n m  - -  n m  ~ n  - - n m  - -  n m  

where Anm is the overlap between ~, and the relevant geminal projected out of 
7Ja, B(~ is defined through (8) and the e, are the eigenvalues to h(12). The overlap 
between the exact ground state of Beryllium and the Hartree-Fock result is 
0.985 [7]. The significant deviations from an overlap of unity occur for the highly 
c o r r e l a t e d  1S 2 and 2S 2 geminals [8] and it will be supposed that these overlaps 
occurring in equal proportion [8] give rise to the deficiency of 0.015 in the 
overlap of ~A with the ground state. 

Unfortunately the eigenvalues to h(12) are not known in the case of Berryllium 
but they are known [5] for the ion C z+. Since it is reasonable to suppose that the 
A,,, do not change rapidly with the nuclear charge in an isoelectronic series, the 
values for the A,m obtained for Berryllium are inserted into (18). The ground state 
energy of C 2+ is calculated to be 7981893cm -1 and is 0.5% above the 
"experimental" non-relativistic energy of 8020746 cm-1 [9]. If a calculation 
were made using this technique it would be possible to improve upon this energy 
by maximizing the overlap integrals with respect to some configurational ~PA. 

The method suggested above is essentially that of taking the expectation 
value of the Hamiltonian over two different wave functions then passing to the 
reduced transition density matrix formation for convenience in performing the 
calculations. This approach is a special case of the problem of determining the 
eigenvalues to an operator H. In general the matrix elements 

H,,, = ( ,~ , I H I X,, > (19) 
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over two basis sets {~.} and {Xm} are computed and the eigenvalue equation 

Z (Hnm -- EAnm) % = 0 (20) 

solved. The A.m are overlap integrals between the two bases 

Anm = ( ~n] Xm) (21) 

and the am define an eigenfunction ~ to H associated with the eigenvalue E, 
that is 

a m = ( ~ J g l X m ) .  (22) 

Use of different basis sets may give an advantage [-10] over the calculation 
of matrix elements with a single basis. For example the {X.} may be expected to 
provide an excellent approximation to the eigenfunctions to H, however any 
integrals involved may be difficult to compute and the introduction of a set {~,} 
which simplifies the integration without a significant reduction in accuracy would 
therefore be advisable. Recently use has been made of this convenience in 
making accurate calculations of the correlation energy of atoms [11]. 

Conclusion 

If it is decided to work with wave functions which are not totally anti- 
symmetric or density matrices which are not completely N-representable then 
it may be possible to develop successful computational procedures which would 
yield bounds upon the eigenvalues to the operators of interest. The particular 
anzats suggested in this paper enables one to work with a reduced density matrix 
directly rather than referring back to the wave function during any variation of 
the density matrix. Since the N-representability problem appears at present to 
be rather intractable investigations involving "almost N-representable" density 
matrices may prove to be profitable. 
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